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Abstract
We present results for the generating functions of polygons and more general
objects that can touch, constructed from two fully directed walks on the
infinite triangular lattice, enumerated according to each type of step and
weighted proportional to the area and the number of contacts between the
directed sides of the objects. In general these directed objects are known as
festoons, being constructed from the so-called friendly directed walks, while
the subset constructed from vicious walks are staircase polygons, also known as
parallelogram polyominoes. Additionally, we give explicit formulae for various
first area-moment generating functions, that is when the area is summed over all
configurations with a given perimeter. These results generalize and summarize
nearly all known results on the square lattice, since such results can be obtained
by setting one of the step weights to zero. All our results for the triangular
lattice are new and hence provide the opportunity to study subtle changes in
scaling between lattices. In most cases we give our results both in terms of
ratios of infinite q-series and as continued fractions.

PACS numbers: 05.50.+q, 02.10Ab, 61.41.+e

1. Introduction

Directed versions of polyominoes or polygons provide exactly solvable versions of the
fundamental lattice models of lattice animals and self-avoiding polygons. They are hence
a valuable testing ground for hypotheses concerning these more general models which are
themselves lattice models of branched polymers and vesicles [1]. Intriguingly, recent work
[2] has argued that the extent to which such directed models can mimic the behaviour of their
unrestricted cousins is perhaps greater than is apparent on first glance. Staircase polygons,
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(a) (b) (c)

Figure 1. Walk pairs on T: (a) a walk pair ending apart, (b) a festoon, (c) a parallelogram
polyomino.

sometimes known as parallelogram polyominoes, therefore may legitimately be used to model
various ring and branched polymer systems. They have also been studied in the combinatorial
literature for a long time as fundamental models that are related to other types of combinatorial
objects such as lattice trees and partitions of integers [3, 4]. These directed polygons are made
from two directed walks that meet at only their end-points. Papers relevant to two walks, and
polygons in particular, include [5–9], with a recent review in [1]. The study of systems of
two (and more) walks that may interact was popularized in [10], with the best-known result
(in [11]) being for systems of non-intersecting walks. In the past much of the work on directed
polygons has been completed on the square lattice, which we denote as S. In this work we
consider the triangular lattice, which we denote as T, as it provides a future testing ground for
hypotheses concerning universality of various quantities and the study of different corrections
to scaling [12, 13].

In this paper we expand the usual discussion of polygons on S to include festoons on
T (see below) which allows us to include weights associated with the number (and type) of
contacts between the sides of the festoon: we consider different weights for site and bond
double-occupation. We note in passing that the now famous problem of alternating sign
matrices [14] is not only related to the six vertex model but also to osculating (touching)
directed walks. Hence our results add to the literature in several ways: firstly, by considering
the more general problem of festoons as well as polygons, secondly by the inclusion of contact
weights in addition to area and step weights, and thirdly, and importantly, by considering
the triangular lattice T. The inclusion of area weights allows for the modelling of biological
vesicles [15–17]. A reason for considering festoons interacting with contact attraction is that
they provide a simple model of the process of DNA denaturation [18–22].

The types of configurations considered are shown on the T lattice in figure 1. Our
triangular lattice is a tiling of isosceles right-angled triangles so that two adjacent triangles
meeting along their hypotenuses form a square. Let us refer to those bonds as diagonal bonds
since they form diagonals of squares. In this way the square lattice, rather than any arbitrary
parallelogram lattice, can be obtained by the removal of a subset of bonds. This is simply an
aesthetic consideration here since we consider walks with general step weights. We consider
the infinite lattice with two walks sharing a common origin. Now, considering orienting the
walks away from the origin, they are directed so that every edge in the walk has non-negative
projection on an axis parallel to the diagonal bonds.

The classes of walk studied in this paper are subsets of pairs of walks in the infinite plane
that have the same starting site, do not cross over each other, and have ending sites along a
common line perpendicular to the diagonal bonds. Such general pairs of walks are here called
walk pairs.
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• A festoon (after [23]), is a walk pair that, in addition, has both walks ending at the same
site.

• A parallelogram polyomino is an object made of the cells of planar lattices, the boundary
of which is a festoon that has both walks meeting only at their starting and ending sites.

By expanding on the work in [24], we calculate generating functions for various classes
of parallelogram polyominoes and festoons on the triangular lattice. We begin in section 2
by considering parallelogram polyominoes with anisotropic step weights only. This allows
us to explore some of the combinatorial connections that these objects harbour. Next, in
section 3, festoons with step weights and mutual-contact weights are discussed. We then add
the consideration of weighting the area inside parallelogram polyominoes in section 4, and
similarly in section 5 area is considered for festoons with step weights and mutual-contact
weights. Generating functions that count the first area-moment of parallelogram polyominoes
and festoons of fixed perimeters are found in the final section.

2. Parallelogram polyominoes with step weights

The boundary of a parallelogram polyomino is a walk pair from the origin, the walks of which
intersect again only at their endpoints. The term parallelogram polyomino was introduced
in [25] to describe a polyomino for which the intersection of the polyomino with every line
j = c − i using Cartesian coordinates (i, j), except the lines through the origin and the
endpoint, are either empty or a connected segment. A similar definition was given in [5].
Parallelogram polyominoes have also been called parallelograms [6] since they can be said to
have upper and lower boundaries that both climb to the right; staircase polygons [9] because
their boundaries resemble staircases, and skew Ferrers diagrams [26].

With PP denoting the set of parallelogram polyominoes on the T lattice, let P̂ (x, y, d)

be a generating function

P̂ (x, y, d) =
∑
p∈PP

xa(p)yb(p)dc(p) (2.1)

that enumerates parallelogram polyominoes on the T lattice by types of edges in their
boundaries. A polyomino p with a(p) horizontal, b(p) vertical and c(p) diagonal edges
in total in its boundary contributes an xa(p)yb(p)dc(p) term to P̂ (x, y, d). Because a polyomino
is defined as a union of cells, the single site is not defined as a (zero-area) polyomino. Thus
P̂ (x, y, d) = 2xyd + x2y2 + x2d2 + y2d2 + 7x2y2d2 . . . .

Several methods have been used to find P̂ (x, y, 0), the S lattice case of P̂ (x, y, d), since
it is useful as a test case before embarking on a more complex problem. Summaries of some
of these methods are given in [23, 1]. A further method that is described in (for example) [27]
is a convolution of two walk pairs that both end a given distance apart.

Many methods for deriving P̂ (x, y, 0) can be extended to the general T lattice case. In
this section, a first expression for P̂ (x, y, d) is derived using a method due to Temperley from
[28] that has been revived for solving lattice enumeration problems [29]. A simpler expression
for P̂ (x, y, d) is then deduced from a different derivation that also uses this method.

2.1. Deriving P̂ (x, y, d) via left height of first column

A parallelogram polyomino can be considered as a set of columns, each one cell wide, where
each column has at least one vertical edge in common with the columns on either side of it,
with two additional conditions. Firstly, the columns to the right of any column have no cells
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Figure 2. The decomposition of a four-column parallelogram polyomino into its first column and
remainder; the dashed edges are internal edges of the polyomino.

Figure 3. An up triangle and a down triangle on the T lattice.

below the rightmost point of the bottommost cell of the column and, secondly, any particular
column has no cells higher than the leftmost points of the topmost cells in any column to
the right. These conditions ensure overlap between successive columns and the directness
of the boundary walks. For example, the polyomino on the left side of figure 2 has four
columns.

For later reference we note that each column, and so each parallelogram polyomino, is a
union of triangular cells (tiles or faces) of two types. We will denote these types as up triangles
for cells whose apex points northwest and down triangles for cells whose apex points southeast
(see figure 3).

A natural decomposition of the cells of a parallelogram polyomino, shown in figure 2,
is to separate the first column, and so split the polyomino into a single column (henceforth
the first column) and another, possibly empty, parallelogram polyomino (the remainder). The
perimeter of the overall polyomino is then the sum of the perimeters of the first column and
the remainder less the lengths of the vertical edges, originally internal to the polyomino,
that the split has made external. Decomposition of a parallelogram polyomino by rows is
equivalent to decomposition by columns and is not considered here.

The set of parallelogram polyominoes is here classified by the number of vertical edges, n,
along the left side of the first column of a polyomino. This characteristic is here called the left
height of the polyomino. If Sn(x, y, d) (or Sn for short) is a generating function enumerating
parallelogram polyominoes of left height n by types of edges in their boundaries, then

P̂ (x, y, d) =
∑
n�0

Sn. (2.2)

The function P̂ (x, y, d) is found below by deriving recurrences for Sn. The smallest
possible left height of a parallelogram polyomino on the T lattice is zero. In this case the
first column can be only a single down triangle. As a self-standing polyomino (with empty
remainder) this first column contributes an xyd term to S0. A single down triangle has
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Figure 4. Parallelogram polyominoes with left height of zero.

+ + + + + + +

Figure 5. Parallelogram polyominoes with left height of one.

right height of one, so, if the remainder of the polyomino is non-empty, the requirement for
overlap between columns means that the remainder must have left height of at least one. The
possibilities are shown schematically in figure 4; adding the two cases gives

S0 = xyd

1 + y−2
∑
j�1

Sj

 = xyd + xy−1d
∑
j�1

Sj (2.3)

where in the latter case allowance has been made for gluing the first column back on to the
remainder and so reducing the number of vertical edges back to the number in the overall
polyomino.

When the left height of a polyomino is one, there are four choices for the first column.
These are shown in figure 5 along with possible remainders for each choice of first column. It
can be seen from this figure that the function S1 must then satisfy a relation to Sn:

S1 = xyd + (x2y2 + d2y2)

1 + y−2
∑
j�1

Sj

 + xy3d

1 + y−2
∑
j�1

Sj + y−4
∑
j�2

Sj


= (x2 + d2 + xyd)S1 + (x2 + d2 + xyd + xy−1d)

y2 +
∑
j�2

Sj

 . (2.4)

If the same procedure is followed for the set of parallelogram polyominoes of left height
of at least 2, the general relation

Sn+1 = y(y + xd)Sn + (x2 + d2 + xyd)Sn+1 + (x2 + d2 + xyd + xy−1d)
∑

j�n+2

Sj (2.5)

is obtained. This relation can be manipulated into the recurrence

(y + xd)Sn+2 − (1 + y2 − x2 − d2)ySn+1 + y2(y + xd)Sn = 0 n � 1 (2.6)

which is a second-order difference equation with constant coefficients, and so has solutions of
the form

Sn = Aλn
+ + Bλn

− (2.7)



3218 A C Oppenheim et al

where A and B are constants (independent of n) to be determined, and λ±(x, y, d) are the
roots of the quadratic

(y + xd)λ2 − (1 + y2 − x2 − d2)yλ + y2(y + xd) = 0 (2.8)

i.e.,

λ±(x, y, d) = y
1 + y2 − x2 − d2 ±

√
(1 + y2 − x2 − d2)2 − 4(y + xd)2

2(y + xd)
. (2.9)

A generating function enumerating parallelogram polyominoes of left height n by the number
of edges in their boundaries via the variable z is the isotropic perimeter function Sn(z, z, z).
Since a parallelogram polyomino of left height n must have at least n vertical edges in its
boundary, by simply expanding λ± it can be readily seen that A must be zero and only λ−
contributes to Sn. The constant B can be calculated from equations (2.7) and (2.4) as

B = (x + dy)(d + xy)

y + xd
. (2.10)

A perimeter generating function for parallelogram polyominoes is the sum of Sn for all values
n of the left height, so, from equation (2.2),

P̂ (x, y, d) =
∑
n�0

Sn = S0 +
(x + yd)(d + xy)

y + xd

∑
n�1

λn
−

= xyd +
(x + yd)(d + xy)

y

∑
n�1

λn
−. (2.11)

Whilst this expression of P̂ (x, y, d) can be simplified by substituting in the expression of
equation (2.9) for λ−, the (formal) geometric series factor

∑
n�1 λ

n
− suggests that there could

be a derivation of the perimeter generating function in which objects of size n are enumerated
by λn

−. Part of such a derivation is given in the next subsection, and is shown to lead to a
simpler expression for P̂ (x, y, d).

2.2. Deriving P̂ (x, y, d) via right height of first column

Another way to enumerate parallelogram polyominoes by the types of steps in their boundary
via the method of Temperley introduced in the last subsection is to take the right (rather than
left) height of the first column to be the important characteristic of the polyomino. Let the right
height of a polyomino be the number of vertical edges on the right side of the first column,
and let Dn(x, y, d) be a generating function enumerating parallelogram polyominoes of right
height n by types of edges in their boundaries, so that

P̂ (x, y, d) =
∑
n�0

Dn(x, y, d). (2.12)

When the right height of a polyomino is zero, its first column can be only the single up triangle.
This is the only possible polyomino contributing to D0(x, y, d) since the lack of edges on the
right-hand side of the column does not allow multi-column polyominoes of zero right height.
Thus

D0(x, y, d) = xyd. (2.13)

If the right height of a polyomino is nonzero, then there are four possible first columns,
depending on whether the top and bottom edges of the column are horizontal or diagonal.
These four possibilities are shown in the left side of figure 6. The four polyominoes that have
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n n n n

, , ,

n

Figure 6. Parallelogram polyominoes with right height of n can be constructed from a lattice
object that has compressed the first column as the edges in the right height of the column.

(a) c)(b)

parallelogram polyominoes

(

Figure 7. Obtaining an expression for P̂ (x, y, d): (a) Parallelogram polyominoes with right
height of 1; (b) the set of lattice objects with perimeter generating function T1(x, y, d); (c)
parallelogram polyominoes with left height of 0; the ringed objects are then all the parallelogram
polyominoes.

a common remainder and the same sites of overlap between first column and remainder can
all be constructed from a single object that is the remainder with a line of length n overlapping
its first column. If Tn(x, y, d) is introduced as a generating function enumerating the resulting
‘remainder with line’ lattice objects by their perimeter, then

Dn(x, y, d) = (x2 + d2 + xyd + xy−1d)Tn(x, y, d). (2.14)

If equations (2.13) and (2.14) are substituted in equation (2.12), comparison of that
equation with equation (2.11) shows that Tn(x, y, d) = λn

−. A more direct combinatorial
derivation of this last result, i.e., one that did not rely on the results in section 2.1, would
reduce the length of the derivation of P̂ (x, y, d) and so would be interesting to see.

Nonetheless, these extra functions Tn(x, y, d) are useful for finding a simple expression
for P̂ (x, y, d): the set of objects enumerated by T1(x, y, d) can be modified to give the set
of parallelogram polyominoes. Indeed, the objects enumerated by T1(x, y, d) are formed
from the parallelogram polyominoes of right height 1 by compressing the first column of the
polyomino into the single vertical edge on its right side (as shown in figures 7(a) and (b)).
The remainder of a polyomino of right height 1 is either a parallelogram polyomino itself
or is empty. Thus T1(x, y, d) − y2 = λ− − y2 is also a perimeter generating function for
parallelogram polyominoes of left height at least 1.

As shown in figure 7(c), the set of parallelogram polyominoes of zero left height can be
formed by adding a column of a single down triangle to the left of each object enumerated by
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T1(x, y, d), so

P̂ (x, y, d) = λ− − y2 + xy−1dλ−

= 1 − x2 − y2 − d2 −
√
(1 − x2 + y2 − d2)2 − 4(y + xd)2

2
(2.15)

which can be rewritten as

P̂ (x, y, d) = 1 − x2 − y2 − d2 −
√
(1 − x2 − y2 − d2)2 − 4(x2y2 + x2d2 + y2d2 + 2xyd)

2
.

(2.16)

2.3. Special cases

Case 2.1. On the isotropic S lattice we have

P̂ (z, z, 0) = 1 − 2z2 − √
1 − 4z2

2
= z2(C(z2) − 1) (2.17)

so the number of parallelogram polyominoes of perimeter 2n + 2 edges on the S lattice is the
nth Catalan number cn [30, 5]. This result, and also the corresponding anisotropic function
P̂ (x, y, 0), are both well-known.

Case 2.2. Another interesting case combinatorially is when one lets x = y = z and d = z2:

P̂ (z, z, z2) = 1 − 2z2 − z4 −
√
(1 − 6z2 + z4)(1 + z2)2

2
= z2(z2R(z2) + R(z2) − 1) (2.18)

so the number of parallelogram polyominoes of perimeter 2n + 2 on the T lattice where
diagonal steps are treated as twice the length of vertical or horizontal steps is rn + rn−1, where
rn is the nth large Schröder number [31, 32, 4].

Case 2.3. On the isotropic triangular lattice the perimeter only generating function for
parallelogram polyominoes is

P̂ (z, z, z) = 1 − 3z2 −
√
(1 − 2z − 3z2)(1 + z)2

2
= z2 (zM(z) + M(z) − 1) (2.19)

so the number of parallelogram polyominoes of perimeter n + 1 on the T lattice is mn + mn−1,
where mn is the nth Motzkin number [33–37].

Case 2.4 (Enumerating by endpoint). Let P̂ (x, y, d; ν, ρ) be a generating function
enumerating parallelogram polyominoes by types of edges in their boundaries and also by
the numbers of columns (with ν being conjugate variable) and rows (with ρ being conjugate
variable). Because of the directedness, the numbers of columns and rows are equivalent to
the coordinates of the endpoint of the two directed walks making up the boundary of the
polyomino as described in the introduction. An expression for this function can be found by
making the substitutions x → √

νx, y → √
ρy and d → √

νρd in equation (2.16), so that

P̂ (x, y, d; ν, ρ) = U −
√
U 2 − 4νρ(x2y2 + νx2d2 + ρy2d2 + 2xyd)

2
(2.20)

where

U = 1 − νx2 − ρy2 − νρd2. (2.21)

For example, on the S lattice

P̂ (z, z, 0; ν, ρ) = 1 − (ν + ρ)z2 −
√

1 − 2(ν + ρ)z2 + (ν − ρ)2z4

2
. (2.22)
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κ µ
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µ µ

Figure 8. Weights of contact representing interaction between the walks of a walk pair.

The number of (configurations of ) parallelogram polyominoes on the S lattice that have
endpoint at (r, n − r), where we use a standard Cartesian coordinate system and n, r � 1, is
the coefficient [νrρn−r zn] of P̂ (z, z, 0; ν, ρ), which is [30]

N(r, n − r) = 1

n − 1

(
n − 1

r

)(
n − 1

r − 1

)
(2.23)

where N(r, n − r) is a Narayana number1.
Further to this, a parallelogram polyomino in which each column can be coloured without

restriction any of k colours is often called k-coloured. Coloured polyominoes have been
considered on the S lattice in [42–45, 4], particularly two-coloured parallelogram polyominoes
(zebras). Enumeration of k-coloured polyominoes can be achieved by weighting each column
via ν = k. Thus, for example, an isotropic perimeter generating function for k-coloured
parallelogram polyominoes on the S lattice is

P̂ (z, z, 0; k, 1) = 1 − (k + 1)z2 −
√

1 − 2(k + 1)z2 + (k − 1)2z4

2
. (2.24)

3. Festoons with contact weights

A walk pair can be decomposed into components in which the walks are apart, i.e.
parallelogram polyominoes, and sections in which the walks are together on shared edges. A
contact between the two walks of a walk pair is defined to be a site shared by both walks, and
a return contact a contact other than the initial contact at the origin. If the walks take different
edges to arrive at a site (and so are the final edges of each walk of a parallelogram polyomino),
the contact at the site is here weighted by κ ; if both walks use the same edge to arrive at a site,
this contact is here weighted by µ (see figure 8).

The term festoon was introduced in [23] to refer to the signed festoons that are described
in case 3.2 below. Here, the term festoon is used to denote similar lattice objects: walk pairs
in which the walks of the pair start and end at the same sites. These general festoons appear
(unnamed) in an exercise in [4], and also are essentially the same as the ∞-friendly walkers
introduced in [46]. The zero-edge walk pair, i.e., the site at the origin, is classed as a festoon.
Since all other festoons are concatenations of parallelogram polyominoes, with generating
function κP̂ (x, y, d), and sections in which the walks of the walk pair occupy the same edges

1 The numbers N(r, n− r) were for a time called Runyon numbers [38, p 17], and also in [7, 39], but now are known
as Narayana numbers. They were introduced in [40]. They are a generalization of Catalan and Schröder numbers, and
also are used to describe return walks, for which see [41, 32]. For more detailed descriptions of Narayana numbers,
see the references in [4].



3222 A C Oppenheim et al

+

+ -

+

-

+--

Figure 9. Signed festoons generated from a single festoon.

of the lattice, with generating function µ(x2 + y2 + d2), then P(x, y, d; κ,µ), the generating
function enumerating contact-weighted festoons by types of edges, is

P(x, y, d; κ,µ) = 1

1 − µ(x2 + y2 + d2) − κP̂ (x, y, d)
. (3.25)

Festoons weighted by contacts provide a simple model of DNA denaturation [18–22].

3.1. Special cases

Case 3.1 (Without weights). If κ and µ are both unity, then the contact weights are not present.
Thus a generating function enumerating festoons by types of edges alone (without contact
weights) is, after quite a bit of rearranging

P(x, y, d) = P(x, y, d; 1, 1) = P̂ (x, y, d)
1

x2y2 + x2d2 + y2d2 + 2xyd
. (3.26)

The S lattice case of this expression, i.e. P(x, y, 0), is essentially derived in [46], where
similar objects called ∞-friendly walks are considered, and an expression for P(x, y, 0) is
also implicit in [7, 23]. Finally, the isotropic perimeter function on the S lattice, P(z, z, 0), is
equal to C(z2), where C(z) is the generating function of the Catalan numbers.

Case 3.2 (Signed festoons). A signed festoon is defined here to be a festoon in which the walks
of the walk pair may cross over. The walk that arrives at a return contact site as the upper walk
need not leave as the upper walk, and similarly for the lower walk. Instead, a signed festoon
has a positive walk and a negative walk, so if there are n return contacts between the walks,
an unsigned festoon generates 2n signed festoons. For example, four signed festoons can be
formed from the festoon on the left of figure 9.

In a signed festoon, there are two possibilities for each parallelogram polyomino
component: one with the initial upper walk (from the origin) as the upper walk, and one with
it as the lower walk. A generating function enumerating signed festoons by types of edges is
then

P(x, y, d; 2, 1) = 1√
(1 − x2 − y2 − d2)2 − 4(x2y2 + x2d2 + y2d2 + 2xyd)

. (3.27)

Signed festoons on the S lattice have been used in proofs in [7, 23]. On this lattice

P(x, y, 0; 2, 1) = 1√
1 − 2x2 − 2y2 − 2x2y2 + x4 + y4

=
∑
n�0

n∑
r�0

(n
r

)2
xryn−r . (3.28)

The second equality above stems from the argument that on the S lattice there are
(
n

r

)
single

walks, so
(
n

r

)2
signed festoons, that start at the origin and have end point at (r, n−r). There are
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then
( 2n

r

)
signed festoons on the S lattice with perimeter of 2n edges. Signed festoons on

triangular lattices however do not appear to have been studied previously.

Case 3.3 (Osculating walk pairs). If κ = 1 and µ = 0, then the walks in a festoon are allowed
to meet at sites but not to occupy the same edge. The walk pair of such a festoon is said to be

osculating [47]. Osculating walk pair functions are here denoted by the symbol
∨∧. Thus

∨∧
P (x, y, d) = P(x, y, d; 1, 0) = 1

1 − P̂ (x, y, d)
. (3.29)

The S lattice case of this is essentially the generating function given in [46]; further to
that result, the isotropic perimeter generating function for osculating walk pairs on the S

lattice is
∨∧
P (z, z, 0) = 2

1 + 2z2 +
√

1 − 4z2
= z−2F(z2) (3.30)

where F(z) is the generating function of the Fine numbers [48].

4. Parallelogram polyominoes enumerated by steps and area

4.1. Standard area

WithPP again denoting the set of parallelogram polyominoes on the T lattice, let Q̂(x, y, d; q)
be the generating function

Q̂(x, y, d; q) =
∑
p∈PP

xa(p)yb(p)dc(p)qi(p) (4.31)

that enumerates parallelogram polyominoes by types of edges in their boundaries and standard
area. A parallelogram polyomino of i(p) triangular cells with a(p) horizontal, b(p) vertical
and c(p) diagonal edges in total in its boundary contributes an xa(p)yb(p)dc(p)qi(p) term to
Q̂(x, y, d; q).

In section 2, the polyominoes in the set PP were decomposed into their first column and
a (possibly empty) remainder, from which the perimeter generating function P̂ (x, y, d) was
found by summing the perimeters of the two components of each polyomino. In this section,
the complementary approach of adding a column to a (possibly empty) polyomino in order to
count the area and perimeter of the augmented polyomino is used. The derivation presented
here is based upon that used to derive S lattice functions, for example in [49, 50]; it is a
functional version of the method used by Temperley [28]. Here Q̂(x, y, d; q) is found as a
special case of a function that, in addition to perimeter and area, also enumerates polyominoes
by their left height. Let the variable s count the left height of a parallelogram polyomino
(defined in section 2), and let X̂(s; x, y, d; q) (or X̂(s) for short) be the generating function

X̂(s) =
∑
p∈PP

sleft(p)xa(p)yb(p)dc(p)qi(p) (4.32)

that enumerates parallelogram polyominoes by left height, types of edges in their boundaries
and standard area, where left(p) is the left height of the parallelogram polyomino p. The
desired perimeter-area generating function, Q̂(x, y, d; q), is then the function X̂(1).

It is convenient to derive X̂(s) as the sum of two functions: one function, here denoted
X̂1(s), enumerating single-column polyominoes, and the other, X̂2(s), enumerating multi-
column polyominoes.
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Figure 10. Types of possible single-column parallelogram polyominoes.

p
i

(a) (b) (c) (d )

Figure 11. Addition of a column to a parallelogram polyomino p with the first down triangle of
the column in grey and other required cells in black.

The function X̂1(s) can be found by building the single column around its uppermost
down triangle. If the column has no down triangles, then it must consist of a single up triangle.
Otherwise, below the uppermost down triangle in the column there is a (possibly empty)
sequence of up–down triangle pairs (‘squares’) which may in addition have an up triangle at
its base, and above the uppermost down triangle there is either no further cell or a single up
triangle. These possibilities are shown in figure 10.

Consideration of the perimeters, areas and left heights of these single columns leads to
the following equation:

X̂1(s) = sxydq +
xydq

1 − sy2q2
+

sy2d2q2

1 − sy2q2
+

sx2y2q2

1 − sy2q2
+

s2xy3dq3

1 − sy2q2

= sxydq +
y(sxyq2 + dq)(x + sydq)

1 − sy2q2
. (4.33)

The construction of a single column in finding X̂1(s) is unnecessarily complicated; it has
been introduced because a similar construction is now used to find an expression for X̂2(s).
For a parallelogram polyomino p of non-zero left height, an augmented polyomino that has an
additional column on the left can be formed by attaching a down triangle to one of the vertical
edges counted in the left height of p, and constructing a column around this down triangle
as described below: Suppose the down triangle is attached to the ith vertical edge in the left
height of p, where 1 � i � left(p), as in figure 11(a). Then

• For the augmented polyomino to be a parallelogram polyomino, the i − 1 vertical edges
in the left height of p below the edge to which the down triangle has already been attached
must have a up–down triangle pair (‘square’) to their left in this additional column, as in
figure 11(b).

• At heights below the base of p, the additional column can have an arbitrary number of
(alternately) up and down triangles, and have as its base cell either an up or down triangle,
as in figure 11(c)

• An up triangle can also be added above the first-attached down triangle, as in figure 11(d ).
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Consideration of how the perimeter, area and left height of p change by augmenting it
with this additional column leads to the following equation:

X̂2(s) = (sxq2 + y−1dq)
(x + sydq)

1 − sy2q2

left(p)∑
i=1

(sq2)iX̂(s)

= (sxyq2 + dq)(x + sydq)

y(1 − sy2q2)(1 − sq2)
(X̂(1) − X̂(sq2)) (4.34)

where in the latter equality the terms from polyominoes of zero left height cancel inside the
last set of brackets. Thus

X̂(s) = X̂1(s) + X̂2(s)

= sxydq +
q(sxyq + d)(x + sydq)

1 − sy2q2

(
y +

X̂(1) − X̂(sq2)

y(1 − sq2)

)
. (4.35)

An iterative technique for functional equations [51, 24] can then be employed at this point to
obtain the desired Q̂(x, y, d; q), i.e., X̂(1). Basically the idea is that equation (4.35) provides
an equation expressing X̂(s) in terms of X̂(1) and X̂(sq2) so that by substituting s = sq2 into
equation (4.35) one obtains an equation giving X̂(sq2) in terms of X̂(1) and X̂(sq4) and so
one can rewrite equation (4.35) as an equation giving X̂(s) in terms of X̂(1) and X̂(sq4). By
an indefinite series of substitutions, a convergence argument and a final substitution of s = 1,
one can obtain a functional equation for X̂(1). Hence

Q̂(x, y, d; q) = qy

∑
n�0(xd(1 + q2n) + (x2 + d2)yq2n+1)(1 − y2q2n+2)−1Vn(x, y, d; q)∑

n�0 Vn(x, y, d; q)
(4.36)

where

Vn(x, y, d; q) = (−1)nqn

yn(y2q2; q2)n(q2; q2)n

n∏
j=1

(xyq2j−1 + d)(x + ydq2j−1). (4.37)

This perimeter-area generating function for parallelogram polyominoes on the T lattice
is new; the S lattice case, Q̂(x, y, 0; q), is well-known.

Case 4.1 (Parallelogram polyominoes on the S lattice). From equations (4.36) and (4.37) a
generating function enumerating parallelogram polyominoes on the S lattice by anisotropic
perimeter and area can be derived as

Q̂(x, y, 0; q) = y2

∑
n�0(−1)nx2n+2q(n+1)(n+2)(y2q2; q2)−1

n+1(q
2; q2)−1

n∑
n�0(−1)nx2nqn(n+1)(y2q2; q2)−1

n (q2; q2)−1
n

. (4.38)

On the S lattice, a parallelogram polyomino is a collection of square cells. There are no
diagonal edges on this lattice,so both the upper and lower walk boundary of the polyomino must
contain the same number of horizontal (and vertical) edges. Many previous expressions for
a perimeter-area generating function for parallelogram polyominoes on the S lattice therefore
enumerate edges in the semi-perimeter and count area as the number of square cells, and so
derive Q̂(

√
x,

√
y, 0; √

q ).
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(a) (b) (c) (d ) (e) ( f )

0
1

0
1

0

0

1 1

0
1

Figure 12. The �-area of each festoon that has anisotropic perimeter term of xyd3, as the sum of
the number of up triangles.

4.2. �-area

The �-area of a parallelogram polyomino or festoon on the T lattice is the number of up
triangles enclosed between the walks of the parallelogram polyomino or festoon, respectively.

Example 4.1. Of the six festoons on the T lattice that have anisotropic perimeter term of
xyd3, the walks of the festoons (a) and (c) in figure 12 enclose no �-area, the walks of (b),
(d ) and (e) enclose one unit and (f ) encloses two units.

In this subsection we restrict our discussion to parallelogram polyominoes. In order to
derive �-area functions, however, it is convenient in this section to consider the complement
of the �-area, i.e., the number of down triangles of area enclosed by the walks of the
parallelogram polyomino, which is the -area. Here, generating functions derived using the
number of down triangles enclosed as the area are given a down-pointing triangular subscript
(). An expression for Q̂(x, y, d; q), the generating function enumerating parallelogram
polyominoes by their -area and edge types can be obtained from the process used in the last
subsection for the standard area function, and is

Q̂(x, y, d; q) = y

∑
n�0(xd(q + qn) + (x2 + d2)yqn+1)(1 − y2qn+1)−1V,n(x, y, d; q)∑

n�0 V,n(x, y, d; q)
(4.39)

where

V,n(x, y, d; q) = (−q)n

yn(y2q; q)n(q; q)n
n∏

j=1

(xyqj−1 + d)(x + ydqj−1). (4.40)

Reflection in the line j = i maps the set of parallelogram polyominoes to itself, but switches
the down and up triangles of each polyomino. The �-area function, Q̂�(x, y, d; q), thus can
be found from this reflection as

Q̂�(x, y, d; q) = Q̂(y, x, d; q) (4.41)

but apparently not by direct application of the process of the previous subsection. Note that
there is no apparent simple relationship between Q̂�(x, y, d; q) and Q̂(x, y, d; q).

5. Festoons with step, contact weights and area

Now that functions enumerating parallelogram polyominoes by perimeter and area have been
obtained, the corresponding functions for festoons can be deduced. Since a festoon is a
concatenation of parallelogram polyominoes and sections in which the two walks are together,
then a generating function enumerating contact-weighted festoons on the T lattice by types of
edges (anisotropic perimeter) and standard area is

Q(x, y, d; q; κ,µ) = 1

1 − µ(x2 + y2 + d2) − κQ̂(x, y, d; q) (5.42)
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with a function enumerating them by anisotropic perimeter and �-area defined similarly.
Generating functions enumerating festoons by length and standard area, in which the edge
variables are anisotropic or isotropic, can also be found for various weights of contact, such
as osculating walk pairs, from this expression above.

The perimeter-area expressions in equations (4.36) and (4.41) are q-analogues of the
perimeter generating function P̂ (x, y, d), and that of equation (5.42) similarly related to
P(x, y, d; κ,µ). Since these perimeter-area functions are singular at q = 1, it is not possible
to set q to 1 in the infinite sum expressions and thereby obtain the perimeter generating
functions. Nonetheless, perimeter generating functions can still be obtained via the kernel
method [52] (with references therein and also [53]) from intermediate results in the derivation
of the infinite sums. For example, the function P̂ (x, y, d) can be obtained by setting q = 1 in
equation (4.35) and collecting terms.

6. First area-moment of walk pairs

Let T̂Q(x, y, d) be the first area-moment generating function for parallelogram polyominoes,
i.e.

T̂Q(x, y, d) =
∑
p∈PP

i(p)xa(p)yb(p)dc(p). (6.43)

The coefficient of xa(p)yb(p)dc(p) in T̂Q(x, y, d) is then the total of the standard areas of
all parallelogram polyominoes with that anisotropic perimeter term: the first area-moment
generating function is also known as the total-area generating function. The functions
T̂Q�(x, y, d), for which �-area is counted, and TQ(x, y, d; κ,µ) and TQ�(x, y, d; κ,µ),
which enumerate the area enclosed by contact-weighted festoons in units of standard area and
�-area respectively, are defined similarly.

In theory, all these area-moment functions for festoons (including higher moments) could
be calculated as q-derivatives of the corresponding perimeter-area functions. This would be
possible with a continued fraction expression for perimeter-area functions on the T lattice.
Such an expression has, however, not yet been found, so in this section other methods are used
to find the first area-moment functions for parallelogram polyominoes, and then concatenation
of components is used to find first area-moment functions for festoons.

6.1. First area-moment of parallelogram polyominoes

The area of a polyomino can be found as the sum of the number of triangular cells in each
column (or row) of the polyomino. If, for each column of a parallelogram polyomino, a
copy of the polyomino is made with that column marked, then the term contributed by the
polyomino to T̂Q(x, y, d) is the same as the sum of the terms contributed by the copies so
long as only the marked area in each copy is counted. An example is shown in figure 13.

First area-moment functions for single walks were found in [24, 54] by regrouping the
heights within all walks according to the value of the height variable. Similarly, if copies of the
set of parallelogram polyominoes, each with one column marked, are regrouped according to
the area of the marked column,then first area-moment functions for parallelogram polyominoes
can be found.

The first area-moment function T̂Q(x, y, d) can be rewritten as

T̂Q(x, y, d) =
∑
k�1

k T̂Qk(x, y, d) (6.44)



3228 A C Oppenheim et al

= + + +

Figure 13. The area of a polyomino is the sum of the areas of its columns.

= + +

Figure 14. Decomposing a parallelogram polyomino that has a marked column.

where the sum is over the area of a marked column,and it remains to find functions T̂Qk(x, y, d)

that enumerate the set of parallelogram polyominoes with a column of k cells by types of edges
in the boundaries of the polyominoes.

These functions can be found by considering the possible perimeters of the parts of
polyominoes that lie to the left and right of a marked column. Suppose a polyomino is split
into three: the marked column, and the cells of the polyomino that lie to the left and right of the
column, with the vertical edges forming the left and right heights of the column duplicated,
as in figure 14. The resulting objects contain the same total marked area as the original
polyomino, and if the area of the marked column is k, their combined anisotropic perimeter
term is a factor of y2k greater than that of the polyomino.

In section 2.2, the functionsTn(x, y, d) were introduced as perimeter generating functions
for the set of lattice objects remaining after the many–one compressions of the first column of
parallelogram polyominoes into lines equal in height to the right height (n) of that column. It
was also shown then that Tn(x, y, d) = λn

−, where, from equation (2.9),

λ−(x, y, d)
y

= 1 − x2 + y2 − d2 −
√
(1 − x2 − y2 − d2)2 − 4(x2y2 + x2d2 + y2d2 + 2xyd)

2(y + xd)
.

(6.45)

A marked column of area k triangles and right height of r vertical edges has left height of
k − r . In that case, the right part of a polyomino split as in figure 14 has perimeter generating
function λr

−, and the left part, which is a similar (but rotated) object, has perimeter generating
function λk−r

− .
A column on the T lattice with an even number of cells is bounded at top and bottom by

either two horizontal edges or two diagonal edges, and a column with an odd number of cells
has a horizontal edge at either top or bottom and a diagonal edge and vertical edge at the other
end.

By combining these perimeter results, and dividing through by variables representing the
extra vertical edges introduced by the decomposition,

T̂Qk(x, y, d) =
{
(x2 + d2)y−2mλ2m

− if k = 2m
2xdyy1−2mλ2m−1

− if k = 2m − 1.
(6.46)
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The first area-moment generating function for parallelogram polyominoes is then

T̂Q(x, y, d) =
∑
m�1

2m(x2 + d2)(λ−y−1)2m + 2(2m − 1)xdy(λ−y−1)2m−1

= 2
y−2λ2

−
(1 − y−2λ2−)2

(x2 + d2 + xd(yλ−1
− + y−1λ−)) (6.47)

which judicious but simple use of the quadratic expression for λ− of equation (2.8) reduces to
the rational expression

T̂Q(x, y, d) = 2
(d + xy)(y + xd)(x + yd)

(1 − x2 + y2 − d2)2 − 4(y + xd)2
. (6.48)

The corresponding �-area function, T̂Q�(x, y, d), can be found by the same procedure,
and is

T̂Q�(x, y, d) = (d + xy)(y + xd)(x + yd)

(1 − x2 + y2 − d2)2 − 4(y + xd)2
(6.49)

and since the set of parallelogram polyominoes maps to itself under reflection in a diagonal
line through the origin, the total �-area function is half of the total (standard) area function.

6.2. First area-moment of festoons

First area-moment generating functions for festoons do not appear to have been considered in
the previous literature. In [24, 54] the first area-moment of a set of contact-weighted return
single walks was expressed essentially by making copies of each walk and marking the area
of one elevated walk component in each copy. The same method can be used to find the
first area-moment of contact-weighted festoons from the parallelogram polyomino function
T̂Q(x, y, d) as

TQ(x, y, d; κ,µ) = κT̂Q(x, y, d)P(x, y, d; κ,µ)2 (6.50)

where P(x, y, d; κ,µ) is the perimeter generating function for festoons. The corresponding
�-area function, TQ�(x, y, d; κ,µ) is then half of this.
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